

 MIDDLE EAST TECHNICAL UNIVERSITY

 COMPUTER ENGINEERING DEPARTMENT

SENIOR PROJECT 2007

REQUIREMENT ANALYSIS REPORT

ONUR AK 1394576 ŞERİF ÇETİNER 1394832

MASHAR TEKİN 1395565 SADETTİN ŞEN 1395540

1

INDEX

1- INTRODUCTION……………………………………………………………………..2

2- PROBLEM DEFINITION……………………………………………….…………….3

3- LITERATURE SURVEY……………………………………………….……………..5

3.1- Tokenizer…………………………………………………….…………….5

3.2- Spell-Checking…………………………………………………..…………6

3.3- Machine Learning…………………………………………….……………7

3.4- Morphological Analysis………………………………................................7

3.5- Ontology………………………………………………................................9

4- SOFTWARE DEVELOPMENT MODEL………………………...............................12

5- PROJECT SCOPE………………………………………………................................12

5.1- Objective………………………………………………………………….12

5.2- Deliverable…………………………………………..................................13

5.3- Milestone………………………………………………………………….13

6- RESOURCES…………………………………………………………………………13

7- RISK ANALYSIS…………………………………………………………………….14

7.1- Risk Assessment Form……………………………………………..……..14

7.2- Risk Response Matrix………………………………….............................14

8- MARKET ANALYSIS……………………………………………………………….15

9- REQUIREMENTS……………………………………………………………………17

9.1- Software Requirements……………………………………………….…..17

9.2- Hardware Requirements……………………………………………….….17

10- PROGRAMMING LANGUAGE……………………………………………………17

11- DATABASE DESIGN…………………………………………………………….…17

12- APPENDIX…………………………………………………………………………..20

12.1- ER Diagram……………………………………………………………….20

12.2- Use Case Diagram………………………………………………………...21

12.3- DataFlow Diagram………………………………………………………..21

12.4- Gantt Chart………………………………………………………………..24

13- REFERENCES……………………………………………………………………….29

2

1. INTRODUCTION

The general idea of text mining – getting small "nuggets" of desired information out of

"mountains" of textual data without having to read it all – is nearly as old as information

retrieval (IR) itself. Currently text mining is enjoying a surge of interest fuelled by the

popularity of the Internet, the success of bioinformatics, and a rebirth of computational

linguistics. It can be viewed as one of a class of non-traditional IR strategies which attempt to

treat entire text collections holistically, avoid the bias of human queries, objectify the IR

process with principled algorithms, and "let the data speak for itself."

Text mining is data mining applied to textual data. Text is "unstructured, amorphous, and

difficult to deal with" but also "the most common vehicle for formal exchange of

information." Therefore, the "motivation for trying to extract information from it is

compelling – even if success is only partial.

'To the working scientist or engineer, time spent gathering information or writing reports is

often regarded as a wasteful encroachment on time that would otherwise be spent producing

results that he believes to be new' [Weinberg et al, 1963] …. The intelligence analyst, by

contrast, is much more intimate with the available base of recorded information. New

knowledge, or finished intelligence, is seen as emerging from large numbers of individually

unimportant but carefully hoarded fragments that were not necessarily recognized as related

to one another at the time they were acquired. Use of stored data is intensively interactive;

"information retrieval" is an inadequate and even misleading metaphor. „

Don R. Swanson (1988)

A true text mining system

 must operate on large, natural language text collections.

 must use principled algorithms more than heuristics and manual filtering.

 must extract phenomenological units of information (e.g., patterns) rather than or in

addition to documents.

 must discover new knowledge.

3

In a text mining system, machine learning must be used. Mjolsness and DeCoste (2001)

defines machine learning as“The study of computer algorithms capable of learning to

improve their performance of a task on the basis of their own previous experience primarily

through pattern recognition and statistical inference.”.

Natural language processing (NLP) is a subfield of artificial intelligence and computational

linguistics. It studies the problems of automated generation and understanding of natural

human languages. Natural language generation systems convert information from computer

databases into normal-sounding human language, and natural language understanding systems

convert samples of human language into more formal representations that are easier for

computer programs to manipulate.

2. PROBLEM DEFINITION

Radiology reports contain a great deal of information that characterizes

a patient's medical

condition. However, a large percentage of

this information is unstructured, taking the form of

free text,

and is therefore difficult to search, sort, analyze, summarize,

and present. Structured

medical data have so much potential benefits for medical practice, research, and

teaching. For

example, if a radiologist is interested only

in a given clinical episode, he or she may elect to

retrieve

only those reports in which the relevant anatomy or findings

are described. Accurate

extraction of lesion size information

from radiology reports can allow a system to

automatically construct

a growth timeline for an indicator lesion. For research and teaching,

structured reports can greatly

improve the recall and precision of information retrieval tasks.

Especially, radiological education can be speed up by the presentation and instruction of

pathologically different and similar images of the same disease. Because of this, the presence

of an image achieve is crucial for radiological education and a high quality radiology service.

The retrieval of similar patient and diseases after a free text search of archieved reports to

radiology workers and/or trainees is going to supply efficiency and convenience for diagnosis

and interpretation. It's been contemplated that free-text seach capability shall be applicable to

all medical reports and shall be widely used within an hospital, independent of radiological

education and service quality increase. This will lead way to numerous analysis such as

diagnosis categorization, identification of treatment integrity and variances for patients who

had the same diagnosis and audit of test adequacy.

4

Only structured data are amenable to advanced causal, spatial,

temporal, and evolutionary

database modeling techniques that

are now being developed in the fields of medical

informatics

and computer science. The implications for teaching files and data collection

for

retrospective research studies are obvious.

However, automatic structuring of radiology reports is a difficult

task for the following

reasons:

 Automatic structuring requires deep understanding because it

is desirable to translate

all relevant information into structured

form.

 Automatic structuring must deal with ungrammatical writing

styles.

Shorthand and

telegraphic writing styles are comemon

in radiology

reports.

 The vocabulary is large. Large numbers of complex

medical terms,

proper names,

product names, abbreviations, and

staging codes

are used in radiology reports.

Hundreds of descriptive

adjectives

are used that are not found in any common

electronic

medical

glossaries.

 There is an assumed knowledge between

the writer and reader.

The objective of this project is text-mining on free-text(unstructured) radiology reports to get

meaningful information, storing these in the database and integrating with the existing

information system to make the patient records searchable.

Natural language processing methods have been reported to increase success in this subject,

that is known as text-mining. Very limited theoretical research exists for Turkish language

and yet no applied work exists. And also there are no open-source natural language processing

tools for Turkish. In addition to this, what information is going to extracted and what

information is important is not yet determined. This projected system is going to self-train

itself on these.

5

3. LITERATURE SURVEY

3.1.Tokenizer

For the language Turkish, we have a morphological tokenizer which is written by Kemal

Oflazer but we want a sentence tokenizer for our project. From the researches i have made in

the internet, i have found an article which will be helpful for developing sentence boundary

detection. From the article, which we can be found at

(http://www.linguistics.ruhr-uni-bochum.de/~strunk/ks2005FINAL.pdf)

Turkish is mostly a verb-final language. So identifying a verb which is followed by a full-stop

means the end of a sentence in Turkish most of the time. But to be more accurate they have

implemented some other criterions.

They trained a program in an unsupervised method manner with the METU TURKISH

CORPUS. They have seen that there are also abbreviations and the ratio of this in the corpus

for Turkish language was 2.84% and they got a 1.31% error for detecting the sentence

boundaries.

Another approach was proposed by Özlem Aktaş who is from Dokuz Eylül University.

(http://ab.org.tr/ab06/bildiri/68.doc) In this approach, every sentence must end with some

specific punctuations. We combine this knowledge with a rule list and a abbreviation list. You

can see the rules from the document which can be found at the upper html address. By using

these 2 lists we can find the sentence boundaries.

So we can use an unsupervised learning method with a corpus and by the help of a Turkish

morphological analyser. Maybe we can simply say that the full-stop seperates two sentences

but this can be a problem with abbreviations. And we can use the second method. The

important thing here is that how our datum are written meaning the syntax and how will the

methods will perform over the datum of our project. By looking the performance we will

decide the method.

6

3.2.Spell-Checking

We want to be able to correct miswritten words so to get a higher valuable data at the end of

our Project so we have decided to have a spell-checker in our program which corrects the

miswritten words. From the articles i have found we can make use of statistics of the

syllables. The article shows this method for this

(http://ab.org.tr/Yazismalar/2006/sunum/att-0251/01-E00-373161051.pdf)

It has been seen that Turkish language has at most 5 letter syllable. So we seperate the words

into the syllables and then we have the percentages of the syllables‟ used. From these

statistics and with the help of some more restrictions we can seperate the input into their

syllables‟ and then by looking the statistics we can correct the miswritten words. It has been

told that this method has nearly 100% success in correcting the miswritten words.

Another article uses dictation errors which is language independent.

(http://www.icgst.com/AIML05/papers/P1120535133.pdf)

They look for 5 commonly mistyping errors which are :

- Substitution Error: Using a letter instead of the other.

- Deletion Error: Unintended elimination of one or more letters.

- Insertion Error: Unintended insertion of a letter in a word.

- Transposition Error: Transposition of two adjacent letters.

- Split Word Error: Attaching two correct separate words.

Again we need a corpus to train this algorithm.

We can use both of these algorithms or a combination of them in our project. But the first one

is giving nearly 100% success as been told and if it is so , we can try to do that method.

7

3.3.Machine Learning

For the machine learning method, we have not decided which one we will continue with. But

we have found that for text mining or data mining needs statistical information and since our

inputs are of the same type we will use these statistics with a supervised learning method.

From the inputs to our program we will be able to separate the disease names , which are

mostly Latin words then we will keep track of the statistics of these words. We have ended up

with this idea by looking at some articles from the internet. For example, our project is similar

with e-mail filtering, and from the article

(http://people.csail.mit.edu/jrennie/papers/ifile00.pdf) we can see that statistics is used in this

project. But the class of the machine learning method is not decided yet.

3.4. Morphological Analysis

Morphology is the field within linguistics which studies the internal structure of words.

While the smallest units of syntax are generally known as words, it is clear that in most (if not

all) languages, words can be related to other words by rules. For example, English speakers

recognize that the words dog, dogs, and dog-catcher are closely related. These relations are

recognized from English speakers‟ tacit knowledge of the rules of word-formation in English.

They intuit that dog is to dogs as cat is to cats; similarly, dog is to dog-catcher as dish is to

dishwasher. The rules understood by the speaker reflect specific patterns in the way words are

formed from smaller units and how those smaller units interact in speech. In this way,

morphology is the branch of linguistics that studies patterns of word-formation within and

across languages, and attempts to formulate rules that model the knowledge of the speakers of

those languages.

There are three principal approaches to morphology, which each try to capture the distinctions

above in different ways and are efficient for different languages. These are,

 Morpheme-based morphology, which makes use of an Item-and-Arrangement

approach.

 Lexeme-based morphology, which normally makes use of an Item-and-Process

approach.

 Word-based morphology, which normally makes use of a Word-and-Paradigm

approach.

8

In morpheme-based morphology, word-forms are analyzed as arrangements of morphemes.

The minimal meaningful unit of a language is defined as morpheme. In a word like

independently, the morphemes are in-, depend, -ent, and ly; depend is the root and the other

morphemes are, in this case, derivational affixes. In a word like dogs, we say that dog is the

root, and that -s is an inflectional morpheme. This way of analyzing word-forms as if they

were made of morphemes put after each other like beads on a string, is called Item-and-

Arrangement. Since Turkish is an agglutinative language and has word structures that are

formed by productive affixations of derivational and inflectional suffixes to root words, we

will use the morpheme-based morphology for our Morphological Analyzing process. To see

Turkish word formation as an example is:

kesilemedi

And its morphemes are:

kes +il +eme +di

As it is seen a word can be formed by a root and lots of suffixes. As a result, although Turkish

has finite-state but nevertheless rather complex morphomatics, which makes it difficult to

analyzed and processing. Adding morphemes to a root word or a stem, a word can be

converted from a nominal to a verbal structure or vice-versa. The surface realizations of

morphological constructions are constrained and modified by a number of phonetic rules.

Although a small number of exceptional cases are available, vowels in the affixed morpheme

must agree with the preceding vowel in certain aspects to achieve vowel harmony. Under

certain circumstances, vowels in the roots and morphemes are deleted. Also, the assimilation

of a large number of words into the language from various foreign languages -French, Arabic

and Persian – have resulted in word formations and these words behave as exceptions to many

rules. Because of these difficulties and the inadequacy of researches there is not a complete

Turkish language processing tool. However, there are some software‟s currently used, with

their demo versions.

The project currently used for Turkish language processing tool is „zemberek‟ which is an

open source project. Zemberek can break text into its tokens, and these tokens into their

morphemes. After this, it can accomplish the Part Of Speech (POS) tagging. Although in our

input texts there are lots of words that are not Turkish, probably they are Latin or English, it

can be used in pre-processing. Since this is an open project we can use the necessary parts for

our texts after doing some modifications. These modifications will include a module that

process the Medical terms.

9

http://en.wikipedia.org/wiki/Morphology_(linguistics)

http://citeseer.ist.psu.edu/cache/papers/cs/129/ftp:zSzzSzftp.cs.bilkent.edu.trzSzpubzSztech-

reportszSz1994zSzBU-CEIS-9423.pdf/using-a-corpus-for.pdf

3.5. Ontology

While we are brain storming on the project, we realize that we need something in order to

provide us relations between words after morphology phase. Searching on that, we learned

that we need ontology on that aspect.

There is lot of definitions of ontology. However, one of these helps us to understand what we

can do with ontology. That definition belongs to Fredrik Arvidsson and Annika Flycht-

Eriksson. They said that “An ontology provide a shared vocabulary, which can be used to

model a domain, that is, the type of objects and/or concepts that exist, and their properties and

relations from general to specific

• Generic

• Core

• Domain

• Task

• Application“

That document also stated that Philosophy, Library and Information Science, Artificial

Intelligence, Natural Language Processing, The Semantic Web are the fields that needs

ontology. (http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf)

The Semantic Web example is the most popular one nowadays. The diagram prepared by

Doç. Dr. Selim Akyokuş (Bilgisayar Mühendisliği Bölümü, Doğuş Üniversitesi) shows the

mission of ontology clearly below:

http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf

10

WEB TODAY SEMANTIC WEB

As we can understand by semantic web computers can understand what they have and what

they can deliver. Ontology is the way that creates the relations. That we need in our project.

We try to reach meaningful relations between words in order to determine what the illness is

or whether the patient healthy or not.

Creating ontology has many steps. Natalya F. Noy and Deborah L. McGuinnes from

Standford University name these steps as below:

· defining classes in the ontology,

· arranging the classes in a taxonomic (subclass–superclass) hierarchy,

· defining slots and describing allowed values for these slots,

· filling in the values for slots for instances.

They gave wine example and figure in their assay. The figure below from their document

(http://protege.stanford.edu/publications/ontology_development/ontology101-noy-

mcguinness.html) :

Bağlaç

BağlaçBağlaç

Kaynak

Kaynak Kaynak Kaynak Kaynak

Kaynak

KaynakKaynak Kaynak

Kaynak

Bağlaç
Bağlaç

Bağlaç

Bağlaç
Bağlaç

Bağlaç

Bağlaç

Bağlaç

Bağlıdır

BağlıdırAçıklanır

Belge Yazılım Resim Yazılım

Belge

AlanAlan Kişi

Yer

Kullanır
Parçasıdır

Konusu

Konusu
Konusu

Yazarı

Adresi

Yazılım

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html

11

“Some classes, instances, and relations

among them in the wine domain. We used

black for classes and red for instances.

Direct links represent slots and internal

links such as instance-of and subclass-of.”

Applying the steps above, we will create our own ontology for the project. We will have

similar class hierarchy with the wine hierarchy:

12

4. SOFTWARE DEVELOPMENT MODEL

During decision period of the software development model which we will use for our project,

we have learnt that in real life there is no company use the models exist strictly. In market,

companies use the fusion of different methodologies. There is two main reasons for that. First,

every single methodology has disadvantages. Therefore, company need to get rid of that

disadvantage by using another model. Second, customer desires. Customers do not have to

think about the model. They only want user friendly programs. Therefore, your model needs

to be suitable for everyone.

Extreme Programming (XP) is a model which is popular nowadays. The most important

property of that model is the customer is always with you during project. Every single step of

the project customer can talk about the company wants. Therefore, you can make necessary

adaptations during development period and at the end customer will get what he/she wants.

However, that model has disadvantages too. All these disadvantages about the documentation

because XP does not waste time with documentation at all. Therefore, your project design and

development may not be reusable for other programmers. On the other hand, that model is for

the programmers which are unfamiliar with project topic, and is for customers who do not

know precisely they want. These two reasons help us to decide to use XP basically but not

totally. Because we may need some fusion of models like companies in market.

http://www.stylusinc.com/Common/Concerns/SoftwareDevtPhilosophy.php

www.istanbul.edu.tr/Bolumler/enformatik/seminer/2004/seminer/XP.pps

5. PROJECT SCOPE

5.1.OBJECTIVE

The main objective of this project is text-mining on free-text radiology reports to get

meaningful information, storing these in the database and integrating with the existing

information system to make the patient records searchable.

http://www.stylusinc.com/Common/Concerns/SoftwareDevtPhilosophy.php

13

5.2.DELIVERABLE

Project Proposal

Requirement Analysis Report

Initial Design Report

Final Design Report

5.3.MILESTONE

Milestone Date

Tokenizer 30.11.2007

Morphologic Analyzer & POS 18.01.2008

Spell Checking 01.02.2008

Ontology 01.02.2008

Integration 08.02.2008

Machine Learning 25.04.2008

Training 23.05.2008

6. RESOURCES

We will use some open source and some licensed projects namely:

 Text mining projects:

 Zemberek

 Rapid Miner

 Snomed

 Protege

 Jena

14

 Database:

 Postgre SQL

 PgAdmin

 PgManager

 Development Environments:

 NetBeans (GUI and as IDE)

 MS Visual Studio 8.0

7. RISK ANALYSIS

7.1.RISK ASSESSMENT FORM

Risk Event Likelihood(0-6) Impact(0-6)

The time required to design,

implement and test

underestimated.

3 5

Not enough time to

implement all the functions

designed.

4 2

Not enough training data. 1 4

7.2.RISK RESPONSE MATRIX

Risk Event Contingency Plan

The time required to design, implement and

test underestimated.
Reschedule time plan

Not enough time to implement all the

functions designed.

Set priorities to the functions and implement

them with the priority order.

Not enough training data. Try to find other sources.

15

8. MARKET ANALYSIS

From the researches we have made on the internet, we have found 2 examples similar to our

project.

- Estard Data Miner 1.2.5

Estard Data Miner is a comprehensive data mining application, able to discover hidden relations both in structured and

unstructured data.

CLASSIFICATION + IF-THEN RULES + DECISION TREES + STATISTICS +

DECISION MODELS = ESTARD DATA MINER

Estard Data Miner Features

Estard Data Miner is based on unique data mining algorithms.

Some of the software functions are: importing data from various databases, statistical

analysis, decision trees creation and revealing all rules which describe hidden correlations in

data. The program allows to create reports on discovered knowledge.

You can create decision rules, revealing all the if-then rules in the data.

With the help of the program you can also build decision trees. Use them to process

classification analysis.

The obtained decision rules and decision trees are represented in a user-friendly,

intuitive form.

Statistical module contains charts and reports that are easy to understand, print and save.

Reports on decision rules, decision trees and statistical analysis are provided.

Rules can be edited or deleted in case if users want to combine their own knowledge with

discovered one.

Wizards for data mining and data base loading will ease the process of data mining.

Different analysis settings for expert data mining customization are available.

Save the discovered rules, trees and statistics for further exploration and usage.

Use previously saved, uploaded or just obtained rules and decision trees to analyze

databases, discovering classes within them.

3420 $

- Rapid miner

The modular operator concept of RapidMiner (formerly YALE) allows the design of complex

nested operator chains for a huge number of learning problems in a very fast and efficient way

(rapid prototyping). The data handling is transparent to the operators. They do not have to

16

cope with the actual data format or different data views - the RapidMiner core takes care of all

necessary transformations. Read here about the most important features of RapidMiner.

 The main features of RapidMiner are:

freely available open-source knowledge discovery environment

100% pure Java (runs on every major platform and operating system)

KD processes are modeled as simple operator trees which is both intuitive and powerful

operator trees or subtrees can be saved as building blocks for later re-use

internal XML representation ensures standardized interchange format of data mining

experiments

simple scripting language allowing for automatic large-scale experiments

multi-layered data view concept ensures efficient and transparent data handling

Flexibility in using RapidMiner:

graphical user interface (GUI) for interactive prototyping

command line mode (batch mode) for automated large-scale applications

Java API (application programming interface) to ease usage of RapidMiner from your own

programs

simple plugin and extension mechanisms, a broad variety of plugins already exists and you

can easily add your own

powerful plotting facility offering a large set of sophisticated high-dimensional visualization

techniques for data and models

more than 400 machine learning, evaluation, in- and output, pre- and post-processing, and

visualization operators plus numerous meta optimization schemes

machine learning library WEKA fully integrated (WEKA web page)

RapidMiner was successfully applied on a wide range of applications where its rapid

prototyping abilities demonstrated their usefulness, including text mining, multimedia

mining, feature engineering, data stream mining and tracking drifting concepts,

development of ensemble methods, and distributed data mining.

There is no buying price for commercial use but the course price for an individual is 1650

euros.

http://www.cs.waikato.ac.nz/ml/weka/

17

9. REQUIREMENTS

9.1.Software Requirements

- Java Virtual Machine

- SQL Server in the Server

9.2.Hardware Requirements

- 32 MB Graphics Card

- 512 MB Ram

- Pentium 4 or higher CPU

10. PROGRAMMING LANGUAGE

At the beginning of the Project we taught of two languages to write the program with ,

which were Java and C# because we had some experience of these languages. Then we

decided to use Java for implementing our program with, since it is operating system

independent and has a wide range of possible libraries which can be used in our program. We

have decided to use NetBeans as our IDE since some of our group members had worked with

that IDE before.

11. DATABASE DESIGN

In the design of the database, we have PATIENT, DOCTOR who have diagnosed the disease

or illness of the PATIENT and the DISEASE and ABNORMAL which hold the names of the

diseases and abnormalities. We have REPORT entity which holds a patientId and the

doctorIds and the name of the report file. SENTENCE keeps all the sentences of the reports.

SECTION keeps the information of the reports‟ sections like (Bulgular , Sonuç and etc. İn

our datum). RESULT keeps the results of the report and if it is a disease or an abnormality.

18

- PATIENT

o patientId (PK)

o name

o surname

o age

o gender

- DOCTOR

o doctorId (PK)

o name

o surname

o title

o branch

- DISEASE

o diseaseId (PK)

o name

- ABNORMAL

o abnormalId (PK)

o existence

o certainity

o howDetermined

o determinationDate

o location

o size

o precision

o dimension

o sizeTrend

o referenceDate

- SENTENCE

o sentenceId (PK)

o content

- SECTION

o sectionId (PK)

o name

19

- RELATION

o relationId (PK)

o resultId

o sentenceId

o sectionId

o reportId

o sentenceNumber

- REPORT

o reportId (PK)

o patientId

o doctorId

o name

- RESULT

o resultId (PK)

o diseaseId

o abnormalId

The ER diagram of the database is in Appendix.

We can add some further attributes to entities.For example, some personal information for

PATIENT entity.

So basically this is what our database will look like.

20

12. APPENDIX

12.1. ER Diagram

21

12.2. Use Case Diagram

12.3. DataFlow Diagram

LEVEL 0

22

LEVEL 1

23

LEVEL2 TEXT MINER

ID Task Name Duration Start Finish Predecesso Resource Names

1
2 Text Tokenizer & Spell Checking 67 days? Thu 01.11.07 Fri 01.02.08 Sadettin Şen
3 Tokenizer 22 days? Thu 01.11.07 Fri 30.11.07 Sadettin Şen
4 Investigating Turkish sen 2 days? Thu 01.11.07 Fri 02.11.07 Sadettin Şen
5 Finding a specific algorit 7 days? Mon 05.11.07 Tue 13.11.07 4 Sadettin Şen
6 Writing the code for this 8 days? Wed 14.11.07 Fri 23.11.07 5 Sadettin Şen
7 Testing & Debugging 5 days? Mon 26.11.07 Fri 30.11.07 6 Sadettin Şen
8 Spell Checking 45 days? Mon 03.12.07 Fri 01.02.08 3 Sadettin Şen
9 Investigating the spell-ch 5 days? Mon 03.12.07 Fri 07.12.07 Sadettin Şen

10 Eliminating to several dif 5 days? Mon 10.12.07 Fri 14.12.07 9 Sadettin Şen
11 Coding 20 days? Mon 17.12.07 Fri 11.01.08 10 Sadettin Şen
12 Finding the best algorithm 15 days? Mon 14.01.08 Fri 01.02.08 11 Sadettin Şen
13 Morphological Analyzer & Part o 57 days? Thu 01.11.07 Fri 18.01.08 Mazhar Tekin
14 Searching "Zemberek" modul 12 days? Thu 01.11.07 Fri 16.11.07 Mazhar Tekin
15 Constructing a medical corpu 10 days? Mon 19.11.07 Fri 30.11.07 14 Mazhar Tekin
16 Syntactic analysis of medical 15 days? Mon 03.12.07 Fri 21.12.07 15 Mazhar Tekin
17 Part of Speech Tagging 20 days? Mon 24.12.07 Fri 18.01.08 16 Mazhar Tekin
18 Database Design 10 days? Mon 21.01.08 Fri 01.02.08 Mazhar Tekin
19 Ontological Process 67 days? Thu 01.11.07 Fri 01.02.08 Onur Ak,Şerif Çetiner
20 Determining the domain and s 2 days? Thu 01.11.07 Fri 02.11.07 Onur Ak,Şerif Çetiner
21 Searching the availability of re 5 days? Mon 05.11.07 Fri 09.11.07 20 Onur Ak,Şerif Çetiner
22 Enumerating important terms 10 days? Mon 12.11.07 Fri 23.11.07 21 Onur Ak,Şerif Çetiner
23 Defining the classes and the c 10 days? Mon 26.11.07 Fri 07.12.07 22 Onur Ak,Şerif Çetiner
24 Defining the properties of clas 10 days? Mon 10.12.07 Fri 21.12.07 23 Onur Ak,Şerif Çetiner
25 Defining the additional proper 10 days? Mon 24.12.07 Fri 04.01.08 24 Onur Ak,Şerif Çetiner
26 Create instances 10 days? Mon 07.01.08 Fri 18.01.08 25 Onur Ak,Şerif Çetiner
27 Create axioms/rules 10 days? Mon 21.01.08 Fri 01.02.08 26 Onur Ak,Şerif Çetiner
28 Integration 5 days? Mon 04.02.08 Fri 08.02.08 2;13;18;19 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
29 Testing & Debugging 15 days? Mon 11.02.08 Fri 29.02.08 28 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
30 Machine Learning 40 days? Mon 03.03.08 Fri 25.04.08 29 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
31 Learning Machine Learning A 10 days? Mon 03.03.08 Fri 14.03.08 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
32 Determining the appropriate a 5 days? Mon 17.03.08 Fri 21.03.08 31 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
33 Coding 20 days? Mon 24.03.08 Fri 18.04.08 32 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
34 Testing 5 days? Mon 21.04.08 Fri 25.04.08 33 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
35 Testing & Debugging 10 days? Mon 28.04.08 Fri 09.05.08 30 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
36 Training 10 days? Mon 12.05.08 Fri 23.05.08 35 Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
37 Web-Based User Interface 5 days? Mon 26.05.08 Fri 30.05.08 Onur Ak,Şerif Çetiner

Sadettin Şen

Onur Ak,Şerif Çetiner
Onur

W T F S S M T W T F S S
07 05 Nov '07

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 1

Project: Project1.mpp
Date: Sun 04.11.07

StrideR
Inserted Text

Sadettin Şen
Sadettin Şen

Sadettin Şen

Sadettin Şen
Sadettin Şen

Mazhar Tekin
Mazhar Tekin

Mazhar Tekin

nur Ak,Şerif Çetiner
Onur Ak,Şerif Çetiner

Onur Ak,Şerif Çetiner
Onur Ak,Şerif Çetiner

S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T
12 Nov '07 19 Nov '07 26 Nov '07 03 Dec '07 10 Dec '07 17 Dec '07 24 Dec '07 31 Dec

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 2

Project: Project1.mpp
Date: Sun 04.11.07

Sadettin Şen
Sadettin Şen

Mazhar Tekin
Mazhar Tekin

Onur Ak,Şerif Çetiner
Onur Ak,Şerif Çetiner

Onur Ak,Şerif Çetiner
Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin

W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F
'07 07 Jan '08 14 Jan '08 21 Jan '08 28 Jan '08 04 Feb '08 11 Feb '08 18 Feb '08

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 3

Project: Project1.mpp
Date: Sun 04.11.07

Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin

Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin

S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M
25 Feb '08 03 Mar '08 10 Mar '08 17 Mar '08 24 Mar '08 31 Mar '08 07 Apr '08 14

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 4

Project: Project1.mpp
Date: Sun 04.11.07

Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin

Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin
Onur Ak,Şerif Çetiner,Sadetin Şen, Mazhar Tekin

Onur Ak,Şerif Çetiner

T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T
pr '08 21 Apr '08 28 Apr '08 05 May '08 12 May '08 19 May '08 26 May '08 02 Jun '08

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 5

Project: Project1.mpp
Date: Sun 04.11.07

13. REFERENCES

- http://www.linguistics.ruhr-uni-bochum.de/~strunk/ks2005FINAL.pdf

- http://ab.org.tr/ab06/bildiri/68.doc

- http://ab.org.tr/Yazismalar/2006/sunum/att-0251/01-E00-373161051.pdf

- http://www.icgst.com/AIML05/papers/P1120535133.pdf

- http://people.csail.mit.edu/jrennie/papers/ifile00.pdf

- http://en.wikipedia.org/wiki/Morphology_(linguistics)

- http://citeseer.ist.psu.edu/cache/papers/cs/129/ftp:zSzzSzftp.cs.bilkent.edu.trzSzpubzS

ztech-reportszSz1994zSzBU-CEIS-9423.pdf/using-a-corpus-for.pdf

- http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf

- http://protege.stanford.edu/publications/ontology_development/ontology101-noy-

mcguinness.html

- http://www.stylusinc.com/Common/Concerns/SoftwareDevtPhilosophy.php

- www.istanbul.edu.tr/Bolumler/enformatik/seminer/2004/seminer/XP.pps

http://www.linguistics.ruhr-uni-bochum.de/~strunk/ks2005FINAL.pdf
http://ab.org.tr/ab06/bildiri/68.doc
http://ab.org.tr/Yazismalar/2006/sunum/att-0251/01-E00-373161051.pdf
http://www.icgst.com/AIML05/papers/P1120535133.pdf
http://people.csail.mit.edu/jrennie/papers/ifile00.pdf
http://en.wikipedia.org/wiki/Morphology_(linguistics)
http://citeseer.ist.psu.edu/cache/papers/cs/129/ftp:zSzzSzftp.cs.bilkent.edu.trzSzpubzSztech-reportszSz1994zSzBU-CEIS-9423.pdf/using-a-corpus-for.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/129/ftp:zSzzSzftp.cs.bilkent.edu.trzSzpubzSztech-reportszSz1994zSzBU-CEIS-9423.pdf/using-a-corpus-for.pdf
http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://www.stylusinc.com/Common/Concerns/SoftwareDevtPhilosophy.php
http://www.istanbul.edu.tr/Bolumler/enformatik/seminer/2004/seminer/XP.pps

	kapakproje.pdf
	Binder1.pdf
	GCLIdesign.pdf
	Project1.pdf
	design3part.pdf

